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J. Phys. A Math. Gen. 25 (1992) 447-468. Printed in the UK 

Stochastic calculus in superspace: I. Supersymmetric 
Hamiltonians * 

A Rogerst 
Department of Mathematics, King's College, Strand, London WCZR ZLS, UK 

Received 25 February 1991, in final form 9 July 1991 

Abstract. Various analytic results which combine fermionic Brownian motion with 
stochastic integration are desclihed, and it is shown that a wide class of stocktic  
diffferential equations in superspsce have solutions. Such solutions are then used to 
derive a Feynman-Kac formula for a supersymmetric system in ternw of the super- 
charge whose square is the Hamiltonian of the system. This is achieved by introducing 
superpaths parametrined by a commuting and an anticommuting time variable. 

1. Introduction 

Superspaces are spaces parametrized by commuting and anticommuting variables. 
By considering paths in superspace, the standard Feynman method for path integral 

purpose of this paper is to investigate the stochastic calculus of these generalized 
Brownian paths, and hence to extend the range of Hamiltonians which can be studied 
by these methods. Additionally, where the theories are supersymmetric, the path 
integrals will be presented in a manifestly supersymmetric formalism. 

Classical stochastic calculus is based on a definition of integration along Brownian 
pat,hs hi.  The int,egra!s obtained have many app!iications, !earling to the theory of 
stochastic differential equations and an analytic treatment of white noise, as well as 
giving new insights into various second-order differential operators, and into Hamilto- 
nian systems in quantum mechanics. They also allow the extension of path integration 
techniques from Euclidean space to more general Riemannian manifolds. 

Recently, following the ideas of Martin [l], this author has considered a fermionic 
analogue of Brownian paths involving paths in anticommuting space [2, 31; and also a 
theory of superpath integration [4]. (Superpaths b, + r& are paths parametrized both 
by ordinary t imet and by anticommuting time 7; the theory ofsuperpath integration is 
appropriate for considering supersymmetric systems, where the Hamiltonian operator 
H is the square of a supercharge operator Q. Superpaths are also considered by Haba 
[5] and by Riedan and Windey [6].) 

There are two essential steps in the fermionic path integration introduced in [2]; the 
first is to observe that the canonical anticommutation relations satisfied by fermionic 
operators in quantum mechanics can be represented by differential operators on spaces 
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of functions of anticommuting variables. This representation is the analogue of the 
Schrodinger representation of the canonical commutation relations for bosonic quan- 
tum mechanics. The second step i s  to construct a measure (in a generalized sense) 
on the space of paths in anticommuting space which leads to a Feynman-Kac formula 
for a useful class of Hamiltonians. A detailed description of these ideas may be found 
in [7]. In this paper the standard theory of stochastic calculus is extended to include 
fermionic paths and superpaths, and consequently to extend the class of fermionic and 
supersymmetric quantum-mechanical systems which can he studied using these path 
integrals. 

Despite its many uses, stochastic calculus is often unfamiliar to theoretical physi- 
cists. This is possibly because much of the literature is only accessible to those who 
are well-versed in mathematical probability theory (although there are notable excep- 
tions, such as the books by Simon [E], Arnold [9] and 0ksendal [lo]). This paper does 
not assume any prior knowledge of stochastic calculus. 

In their simplest form, path integral methods can be applied to Hamiltonians on 
Rm of the form 

leading to the Feynman-Kac formula 

t 

exp(-Ht)f(z) = / d p  exp ( - J o  V(z+b,)ds) f ( z + b , ) .  (1.2) 

Here the measure dp  is Wiener measure, often written in the physics literature as 

Stochastic calculus allows one to construct a Feynman-Kac formula for a Hamiltonian 
which is an arbitrary second-order elliptic differential operator. In fact there are two 
methods by which stochastic calculus can extend the range of possible Hamiltonians. 
First, by including a term of the form exp(- s,' Cy=:=, fa(.) db:) in the integrand, 
a Feynman-Kac formula for Hamiltonians containing first-order derivatives may be 
obtained. Second, if the simple Brownian paths b, are replaced by paths z, which 
satisfy the stochastic differential equation 

m 

(1.4) 

then a Feynman-Kac formula may be obtained for Hamiltonians which are arbitrary 
second-order elliptic operators, the second-order part being 

(1.5) 

The main result of this paper is a supersymmetric Feynman-Kac formula for 
Hamiltonians H which are the square of a supercharge Q, Q being a Dirac-like oper- 
ator. The key idea is the use of superpaths, which allow one to work in terms of the 
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supercharge directly, rather than in terms of the Hamiltonian. As in the classical case 
this Feynman-Kac formula is achieved by applying the It6 formula to carefully chosen 
functions of solutions to certain stochastic differential equations. Before establishing 
the main theorem, a number of technical steps must be taken. 

Section 2 of this paper contains a brief review of fermionic Brownian motion 
and path integration, while section 3 considers stochastic integrals in the presence 
of fermionic paths; this section contains a proof of a formula for change of variable of 
integration which generalizes the usual It6 formula. Section 4 describes some results 
in calculus on a (1, 1)-dimensional superspace, culminating in two supersymmetric It6 
formulae for superpaths, while section 5 contains a crucial theorem on the existence 
of unique solutions to a useful class of stochastic differential equations in superspace. 
Finally, in section 6, the supersymmetric Feynman-Kac formula is established. 

Because the canonical anticommutation relations are also the defining relations of 
a Clifford algebra, the methods developed in this paper are also applicable to various 
geometrical operators on spin bundles and bundles of differential f o r m  on manifolds. 
These applications are the subject of a companion paper [ll], where it is shown that the 
results of this paper lead to a natural theory of path integration on supermanifolds 
and spin bundles. This allows a rigorous derivation of the path integration results 
needed in the supersymmetric proofs of the index theorem given by Alvarez-GaumC 
[12] and by Friedan and Windey [6]. 

The work described in this paper is less formal than the generalizations of Brow- 
nian motion considered in the various non-commuting probability theories (131. The 
constructions are deliberately designed to provide a rigorous version of the power- 
ful but non-rigorous fermionic path integrals used in fermionic and supersymmetric 
quantum mechanics. (Good accounts of these methods may be found in many places, 
for instance in [14] or [15].) Most closely related to this paper is the work of Haba 
[5], who develops a particular example of non-commutative probability which is for- 
mally equivalent to the superpaths of this paper in Euclidean space. A quite distinct 
approach to fermionic path integration is described by Gaveau and Schulman 1161. 

2. Grassmann  preliminaries 

This section introduces notation, and summarizes the important aspects of thd, ap- 
proach to integration in infinite dimensional spaces of anticommuting variables intro- 
duced in [Z]. In particular, fermionic Brownian motion is defined. Throughout Ithis 
paper lower case roman letters will be used for quantities with even Grassmann par- 
ity, lower case greek letters for odd quantities, while roman capitals will be used for 
quantities which may have either parity. 

For each positive integer L ,  BL will denote the real Grassmann algebra on I w L .  
Thus BL is the algebra over the reals with generators l ,pl , .  . . , p L ,  and relations 

p.p. - -0.p. i , j = l ,  . . . ,  L 

i = 1 = pi, . . . , L.  
1 ) -  1 '  

p i l  = 10, 

The Grassmann algebra BL has a Z, grading BL = BL,o +BL,l where elements of BL,o 
(respectively i l R L , l )  are the sum of terms containing the product of an even (respectively 
odd) number of the anticommuting generators P , ,  . . . , p L .  Elements of BL,o are said to 
be even while elements of BL, ,  are said to be odd. Any two odd elements anticommute, 
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while even elements commute both with one another and with odd elements. There 
is a canonical algebra homomorphism E of BL onto W which maps the unit element 1 
to the real number 1 and maps the anticommuting generators Pl , .  . . ,PL  to zero. If 
m and n are positive integers RF'" will denote R" x (BL,l)n. 

If J is any set, Rim'")[" will denote n,, ,RF'" where ,P"" = W"' x (,I5,,')", 
withjlBL being the Grassmann algebra with L anticommuting generators ,PI, ,  , , , ,PL 
in addition to the commuting generator 1. The reason that W~m'")[J1 will be used 
rather than the simpler ( W y ' " ) J  is that many of the useful functions which one might 
wish to construct on the latter space will be zero for the quite trivial reason that 
repeated factors of Grassmann generators are zero. It is thus necessary to use different 
anticommuting generators for each j E J. All the odd generators of this plethora of 
Grassmann algebras are defined to  be mutually anticommuting, so that an odd element 
from one algebra will anticommute with an odd element from any other. 

A typical element of RF'" will be denoted (a?, . , , , zm,8', . . . , O n ) .  For reasons 
which will become clear later, usually we will consider R~m'2")[J1, and a typical el- 
ement of (where J is a finite set containing N elements) will be denoted 
(z', . . . , zh',~',. . . , g N , p ' ,  . . . , p N )  - or (z1.1,. . . , z N , m ,  o'",  . . . , P a n ,  p',', . . . , p N , n ) .  

Given any class of functions on R", such as Cm(iwm,R) or LZ(R",C), one may 
readily construct an analogous class of functions on Ry'" in a standard manner. The 
corresponding classes of functions on I!&:'" are denoted C"(RT'", a), Lz'(Ryz", C) 
and so on. For instance, if IE is a Banach space, C"(RT'", E) is the class of functions 

f : Wy'" - B, @ E 
such that 

f(d, .  . . , z m , e l , .  . .,en) = 1 f,,(d,. . . ,zm)e"l . . . a ~ k  (2.2) 
PEM" 

for some f,, E Cm(Rm, E). (Here p = pl , . . p k  is a multi-index with 1 5 pl < . . . < 
pk 5 n and M,  is the set of all such multi-indices, includi.ng the empty one.) Where 
only sequences p of even length contribute, f is said to he even. A function on Ry'" 
of this general form is said to he hounded if each of the coefficient functions f,, are 
bounded. Differentiation of a function of IF!;'" with respect to the ith even argument 
will be denoted a, and differentiation with respect to the j t h  odd element am+j or 6,. 

The domain of spaces CP'(Rm~",E) (where p >_ 5) can be extended to include 
even elements of any Grassmann algebra 8, (where M is a positive integer) by using 
Taylor expansions truncated to the first three terms. That is, if E denotes the canonical 
mapping of BM onto R and of I& onto R", then the extension of a function f E 
CP'(R",', E) with 

f(z', , , . , zm,@', . . .,e") = f,,(zl,. . . ,z"')@"' . . , BP* (2.3) 
PEM" 

for some f,, E Cm(Rm, E) is the function 

f : (BM,O)m 'L,ln -+ aBM,0 

with 

f(z', . . . , Z",fJ' ,  . . . , e " )  = j&', . . . , P ) 9 ' 1  . . .a'* 
P E M .  
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where 
m 

(2.4) 
i=1 j=1 

Differentiability up to a t  least the fifth order is required so that these extended func- 
tions obey a Taylor theorem with a third-order remainder term. Further details of the 
analysis of functions of Grassmann variables may be found in [17]. 

Integration of functions of r anticommuting variables e', . . . ,e' is carried out ac- 
cording to the method of Berezin [la] where 

J d ' Q f ( 4  = fl , . ,? (2.5) 

if f(6) = fi,,,S'. ..e'+ terms of lower order in 8. 
Combining this with Lebesgue-Stieltjes integration over the real variables enables 

one to integrate functions on Rim'")['] when J is finite. An extension to iutegra- 
tion when J is infinite has been defined in [2j1 using an analogue of the Kolmogorov 
construction [a]. In particular, if I is the interval [O,t], n-dimensional Grassmann 
Wiener measure is defined on Rr'2")1'1 by finite-dimensional distributions in the 
following way: suppose that J is a finite subset of I with J = I t l , .  . . , t N }  where 
0 < tl < . , . < t ,  5 t. Then the corresponding finite distribution is 

fJ : Wf'2"j[JI 3 B, @*,B, @ . . . @ ,J, 
(e', . . . , e,,,', . . . , pN) t+ exp[-i(p' .e1 + - p2 . (e2 - 8') + . . . 

+pN . (P - e N - ' ) ) ] .  (2.6) 

Here n is assumed to be an even number and p' 's' = E:=, O','pr,i. Expectations are 
calculated using Berezin integration. As always with Berezin integration there is no 

(0 , in j i i j  concept of a measurable set, only a formal action on functions. The space 24, 
equipped with this Grassmann measure will be called Grassmann Wiener space. 

The fact that Rf'2")['1 is not simply a product of copies of R?"") makes a some- 
what complicated definition of Grassmann random variables necessary [Z]. 

Definition2.l. 
for each M. Also suppose that G, E L2'(Iwf'2")1J"1 I ,  C) and let 

F o r e a c h M =  1,2,  ..., let J ,beaf ini tesubsetofI ,withJ ,  cJ,+, 

Than t h o  r,41art:en I T . A I  = 1 , 2 , ,  , ,) is said to define a Gzssmszn mndoiii  Illr'l lllr L V l L r r Y l Y l l  \ Y M ,  " M  . 'N 
variable on Grassmann Wiener space if the sequence ( I M ( C ) )  tends to a limit as 
M tends t o  infinity. This limit is denoted Sdp, G or E,(G). (A sequence of pairs 
(J,,G, : M = 1 , 2 , .  . .) which does not necessarily satisfy the convergence condition 
is called a generalized Grassmann random variable.) 

F 
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Suppose that J = { t l , .  . . , t N  is a finite subset of I. Then any function f E 
LZ'(E$'an)'J1) defines a Grmmann random variable with the sequence of pairs of sets 
and functions (JM, G,) being the canstant sequence (J,f). Such Grassmann random 
variables are said to he finitely defined. For each 8 in I there are 2n finitely defined 
Grassmann random variables S;, p: ,  i = 1,. . . , n, corresponding to J = {s) and 

Of(#',.  . . B",p', , . I p") = 8' p',(B', . . .On, p' , .  . . p") = pa. (2.6) 

The (0,2n)-dimensional process (e:, . . .e: , p i , .  . . p : )  is called fermionic Brownian mo 
tion. 

The particular choice of distribution (2.2) is chosen because it relates directly to  
the action of differential operators on L*'(@''')). The connection is made by first 
observing that, i f f  E L1~(!@*")),  

(where n;='=,(O- 4 )  is the Fourier transform of 1, that is 
. , . ,Q are anticimmuting variables) and secondly that the delta function 

(where p' ,  . . . ,p" are also anticommuting variables). Thus 

(2.10) 

(2.11) 

and so 

and 

S j f ( 4 )  = /dnpdn6'(-i)piexp ( - i k p i ( @  -4)) f (S)  (2.12) 
i = 3  

recalling that 6, denotes differentiation with respect to the ith anticommuting vari- 
able. Comparison with (2.3), together with the translational invariance of Berezin 
integration, then shows that, for s in I, 

f(4) = / dpt f(@, + 4 )  

4f(d)  = (-Opff(O, -+ 4) 

I $ f  (4j) = dp, (Of + + 4) (2.13) 
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The canonical anticommntation relations of n fermionic operators ~, i = 1 , .  . . , n 
are 

+:$j + + j+ i  = 26'1, (2.14) 

These relations can be represented on the space ""(Rf'"') of functions of n anti- 
commuting variables O ' ,  . . .On by the operators fl = 0' + ala0'. Comparison with 
(2.13) shows that 

+") = /dP, Eff(0,  + 4) (2.15) 

where 

= 8: - ip:.  (2.16) 

For useful applications it is necessary to combine fermionic path integrals with or- 
dinary bosonic path integrals using Wiener measure and Brownian motion. To do this 
one must take the approach (considered by Bochner [19]) where a probability mea- 

distributions. Thus one can obtain super Wiener measure by defining a measure (in 

in superspace by defining finite distributions on R~m'z")[J1 (where J is a finite subset 
of I containing N elements) to be 

sfire is recovered (via. ?he Ko!mogorov extension theorem) frorr! its finite-dimeIlional 

a generalized sense) on the (m, n)-dimensional super Wiener space R, (m,zn)[ri ,,f paths 

z"J:E', . . . , Z N > 8 1 , .  . . ,EN,$, . . . ,E" )  

1 N 1 N 1  = f J ( a  3 .. . , a  )4,(S , . .  . , B  > E  3 . .  . > E N )  (2.17) 

where 

with 

(2.18) 

and 

,$AS', . . . ,EN@', . . . > E N )  

= exp(-i(E' .E' + - p2 . (8' - - @) + . . . + p N  - . (e" - EN-'))]. (2.19) 

This measure is called super Wiener measure, and is denoted dps. Clearly dp* is 
simply the product of standard Wiener measure dp6 with the fermionic Wiener mea- 
sure dp, defined above. A random variable is again a sequence of pairs of functions 
and sets (GN, JN), in this case such that Jdp, GN converges in L2 to an L2 random 
variable on bosonic Wiener space. 



454 A Rogers 

Grassmann algebra elements are not used to model real situations directly; their 
use is motivated by the algebraic properties of the function spaces of these variables. 
Applications usually give real or complex results by the use of Berezin integration. In 
the case of fermionic paths, applications always involve calculating the expectations 
of random variables, and thus it is sufficient to consider random variables to be equal 
if they have equal expectations, and such equality between random variables will be 
indicated by = I .  In the next section a particular class of random variables on super 
Wiener space, known as stochastic integrals, will be defined. 

One also needs the concept of an adapted stochastic process on super Wiener 
space. The usual definition of adapted cannot he generalized in a straightforward way 
because here one is not working directly with U algebras of measurable sets. 

Definition 2.2. Let t he a positive number and let {F,  : 0 5 s 5 t} he a 
collection of random variables on W~"'2""o''11. Then F, is said to be a stochastic 
process on this space. (h) Suppose that for each s E I = [0, t] the random variable F, 
corresponds to the sequence of pairs ( J s , M , F s , M  : M = 1 ,2 , ,  . .). Then the stochastic 
process F, is said to be adapted if for all positive integers M and each s E I 

(a) 

J ~ , M  [ 0 3 s 1 .  (2.20) 

Berezin integration does not define a true measure, and thus one may not be able 
to prove results on Grassmann Wiener space using standard analytic techniques. Some 
useful tools for handling analytic questions are the norms which will now be defined, 
together with a lemma relating fermionic Wiener integrals to purely bosonic integrals. 

Definition 2.3. Let J be a finite subset of I containing N elements, and let f E 
~ 2 t ( ~ ( " " ) [ J l  @) with 

fk', . . . , z N , B ' ,  . . . , B N , p  1 , . . 

L 

N ) =  c f, (z l , . . . ,  L N l r  )B  P". 
P E M ~ N u E M ~ N  

(a) The function l f l l  E L2(IW",W) is defined by 

(2.21) 

(b) The function l f 1 2  E L'(R", W) is defined by 

Lemma 2.4. 
finitely on J C I .  Then 

Suppose that G is a random variable on super Wiener space, defined 

IE,(G)I 5 Ea(Icli) 

where Eh denotes expectations with respect to bosonic Wiener measure 

(2.23) 
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Prooj 

G(z', . . . ,zN,@', .  . . , fN,p', . . . , - p N )  = 

Suppose that the set J contains N elements and that 

1 G;(z', . . . , +N)@",. (2.24) 
uEM.N uEM.N 

Then 

IEa(G)I 5 dz" donN dpnNfJ(a', . . . , zN)  
P E M ~ N V E M , N  l J  

N P  I xdJ(fl>,,,,f N I  , p  !.""N)GE(z'>'''>z 1' f v  

5 1 IJdzmNfJ(z' ,..., zN)C:(+' ,..., .".)I (2.25) 
PEM.N vEM.N 

because, if ai,  i = 1,. . . , N ,  are even Grassmann elements whose squares are zero, 
the Taylor expansion of e x p ( C E 1  ai) contains each non-zero term with coefficient 
exactly 1. Thus 

3. Bosonic and fermionic stochastic integration 

A key theorem in stochastic calculus is the general It6 theorem, which gives the chain 
rule for stochastic differentiation. This differs from the  equivalent result for a smooth 
deterministic path by including a second-order term, the It6 correction. The purpose 
of this section is to extend this result to include Grassmann Brownian motion. The 
inclusion of the fermiouic sector does not involve any additional stochastic correction 
term in the It6 formula because Grassmann Brownian motion is based on a zero free 
Hamiltonian [2]. 

The It6 formula for m-dimensional Brownian motion, which generalizes the fun- 
damental theorem of calculus, states that 

(3.1) 

where f is a suitably well-behaved function of Rm x R+. This result is a special case 
of the general It6 formula. I n  the case of purely ferrnionic Brownian motion one has  
the simple result that 
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where the notation = I  means that  one has two random variables on R(Lo'2n)1(0,t)1 with 
equal expectations. (A definition of the expression on the right-hand side of equai 
tion (3.2) is given below.) This suggests that one should simply consider Sf(@, ,s) do, 
to be zero, and thus that generalizations of the classical It6 formula to include fermionic 
paths will not involve integrals along fermionic paths, as indeed will be the case. A 
simple definition of time integral will now be given, while theorem 3.3 establishes the 
existence of the It6 integral of a large class of adapted processes on super Wiener space. 
The key theorem 3.5 provides the corresponding generalization of the It6 theorem. 

The absence of the dB and dp terms may be made clearer by the following obser- 
vations. First, because fermion paths are defined in phase space, with the analogue of 
both p and qs present as Os and ps, p is in a sense equal to do-indeed the formalism 
might be developed along these lines. However, if one is applying these methods to 
diffusion theory, such an approach is superfluous because one can already handle all 
combinations of the derivative operators a/aSi directly (in contrast to the bosonic case 
where first- and second-order differential operators other than the flat Laplacian can 
only be handled using stochastic calculus, and where operators of degree higher than 
two cannot be handled at  all). Before turning to the It6 integral, a simple integral 
with respect to time is needed. 

Definition 9.1. Let F, be a [O,t]-adapted process on the super Wiener space 
RimJ",2")[[o"11. Suppose that, for each s in I, F, corresponds (as in definition 2.2) 
to the sequence of pairs of subsets and functions (Js,,, Fs,, : M = 1,2 , .  . .). For each 
integer M = 1 , 2 , .  . , let 

2 M - 1  

I= 1 

where, for r = 1,. . . ,2, - 1,  t ,  z rt/ZM. Also define functions IC, on Rim'2n)[JM1 by 

Then, if IE,(K,) tends to a limit as M tends to infinity, the sequence ( J M ,  IC,) 
defines a Grassmann random variable which is denoted J,' Fa ds, and one says that F, 
has a time integral. Also, if 0 < U < t and M is a positive integer, let p(M,u) be the 
greatest integer such that p ( M , ~ ) t / 2 ~  < U, and set 

(3.5) 

Then, if IE,(Lb) tends to a limit as M tends to infinity, the sequence of pairs ( J M ,  L b  : 
M = 1,2, .  . .) defines a Grassmann random variable which is denoted S," F, ds.  (This 
definition may also be applied to  generalized random variables.) 

Definition 9.2. (a) M$[O,t] denotes theset of all [O,t]-adapted processes F, on thesu- 
per Wiener space R~m'2"o''11 such that (i) J,' lFJ1 ds exists and is finite, (ii) E, (lF,l l)  
is bounded on [O,t]. (b) M;;'[O,t] denotes the set of all [O,t]-adapted processes F, on 
the super Wiener space R~m~2n)[Lo~r11 such that (i) J,' IF,I: ds exists and is finite, (ii) 
E, (1F.I;) is bounded on [O,t]. 
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Note that in this definition, if F, is defined by the sequence (J,,,,F,,, : 
M = l,Z,.. .) (following definitions 2.1 and 2.2), lF811 is defined by the sequence 
(J,,,, IF,,MII : M = 1,2,. . .). lF,ll may be a generalized random variable on Wiener 
space. A similar approach is taken to IF,I2. Also, following definition 3.1, the time 
integrals are Riemann integrals. 

Theorem 9.9. (a) For a = 1,. . . , m  suppose that F" E Mg[O, t] .  For each M = 
1,2,. . . let J, = { f l , .  . . ,t2ww1) with t ,  = rt/2, for r = 1,. . . ,2, - 1. Also let 

2 ,  ~ ( m , 2 " ) [ J w I  ,q with G , E L  ( L 

m P - 1  
= FMm"(zl, . . . ,g',el, . . . ,C,p1, - . . . , p ' ) ( ~ ~ ~ ' ~ '  - -a?). (3.6) 

a=1 I=1 

Then the sequence (J,, G,) defines a Grassmann random variable which is denoted 

Also Is,' ET='=, F," db:Ii is a random variable and 

(Integrals over the interval (O,u), where 0 < U < t ,  are defined by a similar 
modification to that made in definition 3.1.) 

Prooj 
and thus (J,, G,) defines a super random variable. Using the fact that, if q < r ,  

Sdp,(G,) converges to a random variable on m-dimensional Wiener space, 

1 F t , , M p v ( ~  , . . . ,  .')F,~,wp"( ~ ' , . . . , g q ) ( z q t 1  - z q )  

is independent of - z'), and the standard result that 

one obtains 

(3.9) 

which tends to the correct limit as M tends to infinity since F is in Mi;'[O,t]. 

More generally it is useful to combine both kinds of integration, obtaining the 
following definition of a stochastic integral. 
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Definition 3.4. 
process on the super Wiener space R~m'2"0''11 such that,  if 0 5 t ,  5 t ,  5 t ,  

Suppose that  t is a positive real number and that Z ,  is a stochastic 

(3.10) 

where A, and C: are [O,t]-adapted processes on the super Wiener space, with A, E 
Mz[O,t]  and C: E MA'[O,t]. Then Z ,  is said to be a stochastic integral. 

The key theorem, underpinning much of this paper, is the following generalized 
It6 theorem. 

Theorem 3.5. 
Wiener space R~m'zn)[(O't)l with 

Suppose that Z: ( j  = 1, .  . . , p + q )  are stochastic integrals on the super 

(3.11) 

and that Z J  is even for j = 1,. . . , p  and odd for j = p + 1 , .  . . , p  + q. Also suppose 
that IE(A!)' is bounded for each s in [O,t]. Then, if H E C5'(1W(P4),@) and Z: ,M 
denotes the M t h  term of the sequence defining the random variable Z: (following 
definitions 3.1 and 3.2), the sequence H ( Z , , , )  defines a stochastic process denoted 
H,, and H ,  is also a stochastic integral with 

(Here the function H is extended to even Grassmann variables using the truncated 
Taylor series of equation (2.4).) 

Proof Clearly 

2 M - 1  

H(Zl,M) = H ( Z o , , )  + ( H G . + , , M )  - W t , , M ) )  (3.13) 
r = l  

Now 

P+P 

~ ( z t . + , , M )  - ff(zi,,,w) = x A r M ( Z j ) 8 j ' J ( Z t , , M )  
j = 1  

P+P P t 9  

+ 4 CarM(Zj )ArM(Zk)a ,a ,H(Zt~ , , )  + R, (3.14) 
j = 1  k = 1  
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where 

and R, is a remainder term to be analysed. By standard arguments ([lo], p 31) it is 
sufficient to consider the case where H and its derivatives up to fifth order are bounded 
functions. Also, since H is extended from RPbq to x !31,1 by the truncated Taylor 
series @Zj, H obeys a truncated ,Tayior's theorem with remainder at the third order. 
Thus one finds as in the classical case [lo] that IR,I 5 k / 2 2 M  for some k independent 
of M ,  and hence, using lemma 2.4, 

where IRLI < K / 2 M  for some I< independent of M .  The result then follows on taking 
l:-:," "" "f ,--A- +^  :"c";&., 
l l l l l l U I  .%a '1' LIC'IUD Y V  """"UJ. 

4. Supersymmetr ic  It6 formulae 

In this section the results of the previous section are used to derive some supersym- 
metric It6 formulae for random variables on (m, m)-dimensional super Wiener space. 
These formulae are stochastic versions of a theory of calculus on a (1,l)-dimensional 
superspace (parametrized by a real variable t and an odd Grassmann variable r ) ,  which 
will now be described. First, the superderivative DT is defined to be the operator 

(4.1) 

This operator may act on a function of the form F ( t ,  r )  = A(t )  + r B ( t )  where A ( t )  
has a time derivative. (As the notation implies, A and B may have either Grassmann 
parity.) One then has 

(4.2) 

If B(t) is also differentiable, a n  easy calculation then shows that D$ = a/at, and so 
in systems where the Hamiltonian H is the square of a supercharge Q which is an odd 
operator the imaginary-time Schrodinger equation 

- _ -  'f- Hf 
at (4.3) 

has a square root [20] 

DTf = Qf. (4.4) 
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(This equation implies the previous one, since Q is an odd operator and thus anticom 
mutes with DT.) Noting that 

exp(-Ht - Q r )  = exp(-Hit)(l - Q r )  (4.5) 

one may check by direct calculation that, provided H is suitably regular, 

DT(exp(-Ht - Qr))  = Qexp(-Hit - Qr).  (4.6) 

Thus exp(-Hit - Q r )  is the evolution operator for the square root of the Schrodinger 
equation. Also, since Q r  = - rQ 

Qexp(-Ht - QT) = (exp(-Ht - Qr)) (Q - 2 r H )  

and thus 

DT(exp(-Hit - Qr))  = (exp(-Ht - Qr)) (Q - 2 r H )  (4.7) 

a result that will be useful in section 6. 
Turning now to  integration, one may define an integral with respect to  a (1,l)- 

dimensional variable S = (s, U ) ,  including both odd and even limits, in the following 
way [4]: 

The even integral on the right-hand side of this equation is evaluated by regarding 
J:ds F ( s ,  U )  as afunction of U ,  and evaluating this function when U = t+us by Taylor 
expansion about t = U. Integration with respect to the odd variable U is then carried 
out according to the usual Bereein prescription. Explicitly if F ( t ,  T )  = A ( t )  + rB( t )  
one has 

t Jd' d u i  ds F ( s ,  U )  = rA( t )  + (4.9) 

This definition of integration leads to a supersymmetric version of the fundamental 
theorem of calculus in the form 

Jd 'du ldsD,F(s ,n)  = F ( t , r )  - F(0,O) (4.10) 

and hence a natural rule for the superderivative of such an integral with respect to its 
upper limits is obtained as 

t 
D T J d T d u l  dsG(s ,u )  = G(t , r ) .  (4.11) 

Reverting to stochastic calculus, one may now derive a supersymmetric version of both 
the restricted and the general It6 formulae, These are presented in turn as theorems 
4.2 and 4.3. To begin with, a time integral for superpaths must be defined. 
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Suppose that G, and H ,  are adapted stochastic processes on super Definition 4.1. 
Wiener space, and that H ,  E Mk[O, t] .  Then, if Fs = G, + aH,, 

I A' do ds Fs =de, ds H ,  + rG,. (4.12) 

(Throughout the remainder of this paper the summation convention, that repeated 
indices are to  be summed over their range, will be adopted.) The following theorem 
gives asupersymmetric version of the It6 theorem. The superpaths Z, and CS defined 
below are the stochastic version of the standard superfields used in supersymmetric 
quantum mechanics. 

Theorem 4.2. For i = 1,. . . , p  and a = 1, ..., m, let xt and f[,.,. be adapted stochastic 
processes on (m, m)-dimensional super Wiener space, and 4 be afunction in C5'(RP,"') 
which is linear in the odd argument, and let (g ,@) .E R(f'"'. Also, for any g E C5'(R) 
let 

where, recalling from equation (2.16) that <; = 0; - ip:, 

(4.14) i 
24 = x: + -ut:f[8,a C: = c: + ~ 2 i u k  11: =oaf[*,,.. d2 
(Here the notation 6, is formal; it is to he interpreted in combination with ds as 
b, ds = db,. The placing of {; in  formulae will be such that only this combination will 
occur.) Also 4 has been extended to even Grassmann elements as in equation (2.2), 
and it has been assumed that the canonical projection of x2 is always real. (The 
theorem is also valid when x is complex and 4 analytic.) Then 

(4.15) 



A second theorem, which is a supersymmetric version of the restricted It6 theorem, 
will now be proved. 

Theomm 4.3. 
process such that 

Suppose that f E C5'(RP7". Also, for i  = 1 , .  . . , p  let zf be an adapted 

1 f 

zf - 2; = 1 eb(z,)db: + Lids (4.19) 

where, for i = 1,. . . , p  and a = 1, .  . . , m, e: is a function on RP and L i  is an adapted 
stochastic process on (m,m)-dimensional super Wiener space. (It will be shown in the 
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next section that,  under reasonable assumptions on e: and L i ,  processes satisfying 
equations such as (4.17) do exist.) Then, using the notation of the preceding theorem, 

(4.20) 

Also 

(4.22) 1 i 
x a,ajf ys + + - u a , ~  + 8, ( d2 

The result now follows. 

These theorems are crucial for the Feynman-Kac formula to be developed in the 
final section. Before proving this result a further technical step is required: it must be 
shown that a reasonable class of stochastic differential equations can be solved. This 
is the subject of the next section. 
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5. Stochastic differential equations 

In order to obtain generalized Feynman-Kac formulae for fermionic systems in curved 
space, it is necessary to consider more general hosonic stochastic processes than Brow- 
nian motion; the required processes are in fact solutions of stochastic differential equa- 
tions, and in this section the usual theory of stochastic differential equations will he 
extended to include fermionic Brownian motion. The key theorem in this section 
establishes the existence of unique solutions to a wide class of stochastic differential 
equations; in the following section functions of solutions to such equations are analysed 
using the supersymmetric It6 formulae of the preceding section to obtain a supersym- 
metric Feynman-Kac formulae. The main theorem of this section establishes that  
differential equations of the form 

dZ: = A'. (Z, , O,, p,, s) dby + Bj (Z., e,, p I ,  s)ds (5.1) 

have unique solutions, provided that the functions A{ and Bj are sufficiently regular. 
In the following section processes which are solutions of suitably chosen stochastic 
differential equations will be used to  construct Feynman-Kac formulae for various 
differential operators. 

To begin with it is necessary to explain precisely what is meant by a stochastic 
differential equation of the form (5.1). 

Definition 5.1. 
let A{ and Ej map 
Then, if, for j = 1 , .  . . , p ,  Zi is a stochastic process in M;;'[O, t] such that 

Let p3 m and n be positive integers. For j = 1,. . . , p  and a = 1,. . . , m 
x I@' x R+ into BLo. Also let A be a fixed element of Cp. 

Zo = A  (5.2b) 

(where (b,, e,, p,)  are Brownian paths in (m, n)-dimensional super Wiener space), it 
is said that Z, satisfies the stochastic diferential equation (5.2a) with initial condi- 
tion (5.2b). This definition implies that  the Bj(Z,,B,,ps,s)  are in M g [ O , t ]  and the 
A{(Z,,O,,p,,s) are in MA'[O,t]. 

In order to prove that such equations have solutions, and that the solutions are 
unique, one essentially follows the classical method of proof [ZO]. 

Theorem 5.2. With the notation of definition 5.1, suppose that, for all z and y in 
Bto, all s in [ O , t ]  and all (p,v) in M ,  x Mn, the coefficient functions of Ab and E' 
satisfy 

IAit(z,s)  - A i t ( ~ , s ) l  5 - Y I / ( P ~  x 2'") 
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for some fixed positive number it. Then there exists a unique solution to the stochastic 
differential equation 

dZ:' = A ~ ( Z , , e , , p , , s ) d b : + g j ( Z , , e , , p ~ , s ) d s  

Z, = A .  (5.4) 

(Two random variables F and G are said to be equal if E(IP - GIz) = 0.) 

Proof Suppose that z1 and y, are two solutions to (5.4). Then, using theorem 3.3, 

- < 2 k 2 ( l + s )  1' lz,-yUI;du. ( 5 . 5 )  

Hence E(I+, - y,l;) = 0 for all s i n  [ O , t ] ,  and thus any solution which exists is unique. 
To establish existence of solutions consider the sequence Z(r)s, r = 1 , 2 , .  . ., of 

stochastic processes on the super Wiener space R~m'z")[[o"ll with 

ZiO)* = A 

and, for r > 0, 

z;+ = A + 1'gj (Z(,..,), I @,, P. I u)du + 1' Ab (Z(r-l)s, e,, P., u ) W .  ( 5 . 6 )  

Then assume the following as inductive hypothesis, for all integers q up to and includ- 
ing some fixed integer r .  

(a) z ; ~ ) ~  is in M:[o,~];  
(b) 

qqq), - z;q-l)$) 5 tMs)q/(g9 (5.7) 

where M is some positive constant 
Now Z(l,s is well defined and 

Elz(l)s- Z ( , ) A  5 2 1 J I ~ j ( 2 0 i @ " , P " ~ . ) d u l : + 2 ~ ~ l A ~ ( ~ o , ~ " ~ P " , u ) / : d r r .  0 (5.8) 

Thus 

EIZ(l)s - Z(,).1: 5 2k2s2 + kzs(l  + lAI2) 2 Ms (5.9) 

if M > 2 P ( t  + 1)(1+ IAI)'. 
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For the inductive step, note that 

i 

S M L  M d s  r! (5.10) 

- (Mt)'+l 
( r  + l)! - 

This implies that Z(,t,), is in M z [ O , t ] ,  and thus that the inductive hypothesis is 
satisfied. Thus the sequence Z(r)a converges in the required manner. 

6. A supersymmetric Feynman-Kac formula 

This section contains the main theorem, theorem 6.2, establishing a Feynman-Kac 
formula for a Hamiltonian H which is the square of supercharge operator Q, where Q 
is a Dirac-like operator (in a sense made precise below). Such Hamiltonians are referred 
to as supersymmetric, and the corresponding supersymmetric Feynman-Kac formula 
is given in terms of the supercharge operator Q rather than the Hamiltonian H. This 
is a technical advantage, because H is generally considerably more complicated than 
Q. It is also an advantage in principle to work directly with the fundamental Q 
rather than the derived H .  To achieve this supersymmetric Feynman-Kac formula, 
the simple Feynman-Kac formula given in equation (1.2) has to be generalized in three 
ways. First, fermionic paths are included (and thus integrals are with respect to super 
Wiener measure). Secondly, ordinary Brownian paths b, are replaced by solutions z, 
of carefully chosen stochastic differential equations. Thirdly, and this is the vital step 
which leads to a supersymmetric Feynman-Kac formula, superpaths parametrized by 
a (1,l)-dimensional super variable are used. 

Throughout this 'section ( b , , @ , , p , )  denotes Brownian motion in (m, m)- 
dimensional super Wiener space. Also g is a C5 Riemannian metric on Rm which 
has components gij in the natural coordinate system on R", while the m x m matri- 
ces ela are the components of an orthonormal basis (e") of 1-forms on R", so t,hat 

g . . (x)  'I = ei,(z)eja(x). (6.1) 

All derivatives of ea up to fifth order are required to be uniformly hounded on R"'. The 
definition of the superpaths used in  this section is essentially that used in section 4, 
but the choice of stochastic differential equation for the components is determined 
by the metric. 

Definition 6.1. Let xI be the unique solution to the stochastic differential equation 

dxf = ed(z + z,)db," + :(6"b +(f(:)eJa(z + x,)a,eib(r + x,)ds 

x; = 0 i = l ,  . . . ,  m (6.2) 
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where e: and .':8,eib are to be extended to even Grassmann elements by Taylor 
expansion truncated at the first-derivative term, so that (5.3) is maintained. Also, for 
i, a = 1,. . . , m  let 

With the necessary superpaths defined, the main theorem will now be stated and 
proved. 

Theorem 6.2. For a = 1,. . . , m let be the operator 

(6.4) 

acting on the space L2pTssj. Ais0 iet 4 be a i? function on W'*'"* which is iinear in 
the odd argument and has all derivatives up to fifth order uniformly bounded. Then, 
if Q acts on L 2 ' ( R ~ " )  with 

a v = Bo + 
_ _  - 

Q = 1 ~ "  (e' ,(z)ai)  + e(z ,1~)  (6.5) 
H = Q2,  F E  C5'(IWTrm) and (z,B) E RE'", 

Proof. 
C,f(IWY1"') -+ L2'(IRF2"') with 

Let vt,r be the operator on L2'(R~," ')  defined by completion of Ut,r : 

where G E C,"(RT,"'). Then, applying the product Ito formula to the integrand in 
Ut,7 f ( z ,  8) and taking expectations gives, after some algebra, 

Thus 

D T U i , r G ( z . Q ) =  U:,T(Q - z ~ H ) C ( z , 8 )  (6.9) 
and hence, using equation (4.7) and appealing to  the uniqueness of solutions to dif- 
ferential equations such as (6.9), one may deduce that 

Ui,rG(z,Q) = exp(-Ht - Qr)C(z ,Q)  (6.10) 

as required 
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This theorem completes the results to he given in the first of these two papers. 
In the second paper the analysis developed here is applied to various geometric struc- 
tures such as supermanifolds and spin bundles. In particular, solutions to  superspace 
stochastic differential equations are used to make the path integration step in the 
supersymmetric proofs of the Atiyah-Singer index theorem [6, 121 rigorous. 
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